Vectors and Planes (3D Geometry):

Q) Two planes have equations $\prod_{1}: 2 x+y+z=1$ and $\prod_{2}: 3 x+y-z=2$ respectively.
(a) Find the equation of the line (L) of the intersection of the two planes.
(b) Prove that the equation of the plane \prod_{3}, which contains line (L) and is perpendicular to plane \prod_{1}, is $\prod_{3}: x-2 z=1$
(c) Points $P(-2,4,1)$ and Q lie in the plane \prod_{3}, with $P Q$ perpendicular to \prod_{2}. Determine point Q .

Solution:

Concept used:
1.) Equation of the line $\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]+\lambda\left[\begin{array}{l}b_{x} \\ b_{y} \\ b_{z}\end{array}\right]$ or $r=a_{x} i+a_{y} j+a_{z} k+\lambda\left(b_{x} i+b_{y} j+b_{z} k\right)$
2.) Equation of the Plane $a x+b y+c z+d=0$ has direction ratios of the normal to the plane as $n<a \quad b \quad c>$
(a)

Plane $\prod_{1}: 2 x+y+z=1$
Direction Ratios of the vector normal to plane is $n_{1}<211>$
Plane $\prod_{2}: 3 x+y-z=2$
Direction Ratios of the vector normal to plane is $n_{2}<3 \quad 1 \quad-1>$

Consider a point on the line of intersection of the plane (1) and plane (2), with $z=0$.
Solving

$$
\begin{align*}
& 2 x+y=1 \quad \ldots(i) \\
& 3 x+y=2 \quad \ldots(i i) \tag{ii}\\
& x=1 \quad \text { and } \quad y=-1
\end{align*}
$$

Point on the line of intersection $(1,-1,0)$
Line of intersection is perpendicular to the normal vectors of both the planes. The direction ratios of the line are given by

$$
\begin{aligned}
\bar{n} & =\left|\begin{array}{ccc}
i & j & k \\
3 & 1 & -1 \\
2 & 1 & 1
\end{array}\right| \\
& =2 i-5 j+k
\end{aligned}
$$

Equation of line is $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]+\lambda\left[\begin{array}{c}2 \\ -5 \\ 1\end{array}\right]$ or $r=i-j+\lambda(2 i-5 j+k)$
Or $\frac{x-1}{2}=\frac{y+1}{-5}=\frac{z-0}{1}=\lambda$
(b)

Normal vector of plane (1), $n_{1}<2 \quad 1 \quad 1>$, and line are in plane (3)

$$
\begin{aligned}
& \overline{n_{3}}=\left|\begin{array}{ccc}
i & j & k \\
2 & 1 & 1 \\
2 & -5 & 1
\end{array}\right| \\
&=6 i-12 k \\
& O r \\
& \overline{n_{3}}=i-2 k
\end{aligned}
$$

Equation of plane (3) can be written as $\prod_{3}: x-2 z=d$
Plane passes through $(1,-1,0)$
$\Rightarrow 1-2 \times 0=d$
$\Rightarrow d=1$
Equation of plane (3) is $\prod_{3}: x-2 z=1$
(c)

Given $P(-2,4,1)$
Normal vector of plane (3), $n_{3}<1 \quad 0 \quad-2>$

Line $P Q$ is perpendicular to plane (3)

Therefore, Direction Ratios of line PQ are $\begin{array}{lll}n_{3}<1 & 0 & -2>\end{array}$

Equation of line is $\frac{x+2}{1}=\frac{y-4}{0}=\frac{z-1}{-2}=\mu$
Coordinates of Q can be written as
$\Rightarrow x=\mu-2, \quad y=0 \mu+4=4, \quad z=-2 \mu+1$
Point Q satisfies the plane (3) $\prod_{3}: x-2 z=1$
$\Rightarrow(\mu-2)-2(-2 \mu+1)=1$
$\Rightarrow 5 \mu=5$
$\Rightarrow \mu=1$
$\Rightarrow x=1-2=-1 \quad y=4, \quad z=-2(1)+1=-1$
$\Rightarrow Q \equiv(-1,4,-1)$

