eMath Solutions

Properties of Triangle

Q) In $\triangle \mathrm{ABC}$, lines through the vertices A, B and C intersect in a common point D . The areas of different triangles in sq. units are as indicated in the diagram.
Find the area of $\triangle \mathrm{ABC}$.
Solution:
Let AD intersect BC in P, BD intersect CA in Q and $C D$ intersect $A B$ in R.
Let the area of $\triangle C D P$ be ' x ' and that of $\triangle A D Q$ be ' y ' respectively.

We make use of the following property:
For triangles having bases on the same line and having a
 common vertex, their areas are in the ratio of their bases.
$\Rightarrow \frac{x}{35}=\frac{C P}{B P} \ldots .$. (i) Bases CP and BP on the same line BC with D as common vertex
$\Rightarrow \frac{x+84+y}{35+30+40}=\frac{C P}{B P}$
$\Rightarrow \frac{x+y+84}{105}=\frac{C P}{B P} \ldots$ (ii) Bases CP and BP on the same line BC and A is common vertex
From (i) and (ii), $\frac{x+y+84}{105}=\frac{x}{35}$
$\Rightarrow y=2 x-84 \ldots \ldots$.(iii)
\Rightarrow Again, $\frac{y}{84}=\frac{A Q}{C Q} \ldots$ (iv) Bases AQ and CQ on the same line CA and D is common vertex
$\Rightarrow \frac{y+40+30}{84+x+35}=\frac{A Q}{C Q}$
$\Rightarrow \frac{y+70}{x+119}=\frac{A Q}{C Q} \ldots(\mathrm{v})$ Bases AQ and CQ on the same line CA and B is common vertex
From (iv) and (v) $\frac{y+70}{x+119}=\frac{y}{84}$
$\Rightarrow 35 y+x y=84 x 70$
From (iii) and (vi) $35 y+y\left(\frac{y+84}{2}\right)=84 x 70$
$\Rightarrow y^{2}+154 y-(2 \times 70 \times 84)=0$
$\Rightarrow(y+210)(y-56)=0$
$\Rightarrow y=56$
$\Rightarrow x=70 \quad$ From (iii)
\Rightarrow Area of $\triangle A B C=70+35+30+40+56+84=315$ sq. units

