Circles and Triangle:

Q) Diagram (i) shows the incircle of $\triangle A B C$ with radius ' r ' and three other circles inside the triangle, each touching the incircle and two sides of triangle. The radii of the circles nearest to vertices A, B and C are r_{A}, r_{b} and r_{c} respectively. Show that $r_{A}+r_{b}+r_{c} \geq r$ with equality occurring when $\triangle A B C$ is equilateral.

Solution: We consider the Diagram (ii) as shown

$O E=O Q=r$ and $P Q=2 r_{A}$

$$
\frac{O E}{O A}=\sin \left(\frac{A}{2}\right)
$$

$$
O A=x+2 r_{A}+r
$$

$$
\begin{equation*}
\sin \left(\frac{A}{2}\right)=\frac{r}{x+2 r_{A}+r} \tag{i}
\end{equation*}
$$

$\triangle \mathrm{ARG}$ and $\triangle \mathrm{AOE}$ are similar
$\frac{r_{A}}{r}=\frac{A R}{A O}=\frac{x+r_{A}}{x+2 r_{A}+r}$
Eliminating ' x ' in (i) and (ii), it can be shown that $\sin \left(\frac{A}{2}\right)=\frac{r-r_{A}}{r+r_{A}}$
$\Rightarrow r_{A}=r\left(\frac{1-\sin \left(\frac{A}{2}\right)}{1+\sin \left(\frac{A}{2}\right)}\right) \quad$ Similarly $r_{B}=r\left(\frac{1-\sin \left(\frac{B}{2}\right)}{1+\sin \left(\frac{B}{2}\right)}\right)$ and $r_{C}=r\left(\frac{1-\sin \left(\frac{C}{2}\right)}{1+\sin \left(\frac{C}{2}\right)}\right)$
$\Rightarrow r_{A}+r_{B}+r_{C}=r\left[\frac{1-\sin \left(\frac{A}{2}\right)}{1+\sin \left(\frac{A}{2}\right)}+\frac{1-\sin \left(\frac{B}{2}\right)}{1+\sin \left(\frac{B}{2}\right)}+\frac{1-\sin \left(\frac{C}{2}\right)}{1+\sin \left(\frac{C}{2}\right)}\right]$
$\Rightarrow r_{A}+r_{B}+r_{C}=r\left[\frac{\left(1-\sin \left(\frac{A}{2}\right)\right)^{2}}{\cos ^{2}\left(\frac{A}{2}\right)}+\frac{\left(1-\sin \left(\frac{B}{2}\right)\right)^{2}}{\cos ^{2}\left(\frac{B}{2}\right)}+\frac{\left(1-\sin \left(\frac{C}{2}\right)\right)^{2}}{\cos ^{2}\left(\frac{C}{2}\right)}\right]$
The denominator of simplified expression is $\cos ^{2}\left(\frac{A}{2}\right) \cos ^{2}\left(\frac{B}{2}\right) \cos ^{2}\left(\frac{C}{2}\right)$
The expression has a minimum value when $\cos \left(\frac{A}{2}\right) \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$ is maximum. $\cos \left(\frac{A}{2}\right) \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$ is maximum, when $\Delta \mathrm{ABC}$ is equilateral.
$\Rightarrow A=B=C=60^{\circ}$ and $\sin \left(\frac{A}{2}\right)=\sin \left(\frac{B}{2}\right)=\sin \left(\frac{C}{2}\right)=\frac{1}{2}$
From (iii) $r_{A}+r_{b}+r_{c} \geq r$ with equality occurring when $\triangle A B C$ is equilateral.

