

Diagram (i)

C

Circles and Triangle:

Q) Diagram (i) shows the incircle of $\triangle ABC$ with radius 'r' and three other circles inside the triangle, each touching the incircle and two sides of triangle. The radii of the circles nearest to vertices A, B and C are r_A , r_b and r_c respectively. Show that

В

 $r_A + r_b + r_c \ge r$ with equality occurring when $\triangle ABC$ is equilateral.

Solution: We consider the Diagram (ii) as shown

$$OA = x + 2r_A + r$$

$$\sin\left(\frac{A}{2}\right) = \frac{r}{x + 2r_A + r} \quad \dots \quad (i)$$

$$\frac{r_A}{r} = \frac{AR}{AO} = \frac{x + r_A}{x + 2r_A + r} \dots (ii)$$

Eliminating 'x' in (i) and (ii), it can be shown that $\sin\left(\frac{A}{2}\right) = \frac{r - r_A}{r + r_A}$

$$\Rightarrow r_A = r\left(\frac{1 - \sin(\frac{A}{2})}{1 + \sin(\frac{A}{2})}\right)$$
 Similarly $r_B = r\left(\frac{1 - \sin(\frac{B}{2})}{1 + \sin(\frac{B}{2})}\right)$ and $r_C = r\left(\frac{1 - \sin(\frac{C}{2})}{1 + \sin(\frac{C}{2})}\right)$

$$\Rightarrow r_A + r_B + r_C = r \left[\frac{1 - \sin(\frac{A}{2})}{1 + \sin(\frac{A}{2})} + \frac{1 - \sin(\frac{B}{2})}{1 + \sin(\frac{B}{2})} + \frac{1 - \sin(\frac{C}{2})}{1 + \sin(\frac{C}{2})} \right] \dots (iii)$$

$$\Rightarrow r_A + r_B + r_C = r \left[\frac{\left(1 - \sin\left(\frac{A}{2}\right)\right)^2}{\cos^2\left(\frac{A}{2}\right)} + \frac{\left(1 - \sin\left(\frac{B}{2}\right)\right)^2}{\cos^2\left(\frac{B}{2}\right)} + \frac{\left(1 - \sin\left(\frac{C}{2}\right)\right)^2}{\cos^2\left(\frac{C}{2}\right)} \right]$$

The denominator of simplified expression is $\cos^2\left(\frac{A}{2}\right)\cos^2\left(\frac{B}{2}\right)\cos^2\left(\frac{C}{2}\right)$

The expression has a minimum value when $cos\left(\frac{A}{2}\right)cos\left(\frac{B}{2}\right)cos\left(\frac{C}{2}\right)$ is maximum.

 $cos\left(\frac{A}{2}\right)cos\left(\frac{B}{2}\right)cos\left(\frac{C}{2}\right)$ is maximum, when $\triangle ABC$ is equilateral.

$$\Rightarrow$$
 $A = B = C = 60^{\circ}$ and $sin\left(\frac{A}{2}\right) = sin\left(\frac{B}{2}\right) = sin\left(\frac{C}{2}\right) = \frac{1}{2}$

From (iii) $r_A + r_b + r_c \ge r$ with equality occurring when $\triangle ABC$ is equilateral.