Table of Content

Section	Contents	Page Number
	Applications of Derivatives	
1	Tangents and Normals (Equations)	4
2	Lengths of tangent, sub - tangent, normal and sub - normal	4
3	Angle of Intersection of the Curves	6
4	Increasing - Decreasing Functions	8
5	Stationery Points: (i) Maxima - Minima (Global Maxima / Global Minima and Local Maxima / Local Minima or Absolute Maxima / Absolute Minima and Relative Maxima / Relative Minima) (ii) Point of Inflexion, (iii) Concavity / Convexity of the Curves	10
6	Shortest distance between a point and a curve or between two curves	13
7	Mean Value Theorems (i) Lagrange's Mean Value Theorem (LMVT) (ii) Rolle's Theorem (iii) Cauchy's Mean Value Theorem	16
8	Derivatives and the Roots of polynomial equations	20
9	Approximations and Errors	22
10	Application to Geometry	23
11	Application to Physics	23

Applications of Derivatives

The concept of Applications of Derivatives is studied under the following sub - concepts:
1.) Tangents and Normals (Equations)
2.) Lengths of tangent, sub - tangent, normal and sub - normal
3.) Angle of Intersection of the Curves
4.) Increasing - Decreasing Functions
5.) Stationery Points:
(i) Maxima - Minima (Global Maxima / Global Minima and Local Maxima / Local Minima or Absolute Maxima / Absolute Minima and Relative Maxima / Relative Minima)
(ii) Point of Inflexion, Concavity / Convexity of the Curves
6.) Shortest distance between a curve and a point or curve and a curve
7.) Mean Value Theorems
(i) Lagrange's Mean Value Theorem (LMVT)
(ii) Rolle's Theorem
(iii) Cauchy's Mean Value Theorem
8.) Derivatives and the roots of a polynomial equation
9.) Approximations and Errors
10.) Application to Geometry
11.) Application to Physics
(1) Tangents and Normals:

Let $y=f(x)$ represents the equation of the curve
Then by the definition of the derivative,

$$
\left.\frac{d y}{d x}\right|_{P\left(x_{1}, y_{1}\right)}=\left.f^{\prime}(x)\right|_{P\left(x_{1}, y_{1}\right)}
$$

Represent the slope of the tangent drawn to the curve at point $P\left(x_{1}, y_{1}\right)$

Equation of the tangent in Slope - Point form is

$$
y-y_{1}=\left.\frac{d y}{d x}\right|_{\left(x_{1}, y_{1}\right)}\left(x-x_{1}\right)
$$

Equation of the normal in Slope - Point form is

$$
y-y_{1}=\frac{-1}{\left.\frac{d y}{d x}\right|_{\left(x_{1}, y_{1}\right)}}\left(x-x_{1}\right)
$$

(2) Length of Tangent, Normal, Sub - tangent and Sub - normal:

Consider function $y=f(x)$

We have, from the diagram, for point $P(x, y)$

$$
P M=y
$$

PT = Length of the Tangent
PN $=$ Length of the Normal
$T M=$ Length of the Sub - Tangent
$M N=$ Length of the Sub - Normal

Slope of the tangent at $P(x, y)$, given by

$$
m=\tan \theta=\left.\frac{d y}{d x}\right|_{P}
$$

$\frac{P M}{T M}=\tan \theta=\left.\frac{d y}{d x}\right|_{P}$
$\Rightarrow \frac{y}{T M}=\left.\frac{d y}{d x}\right|_{P}$
$\Rightarrow T M=\frac{y}{\left(\left.\frac{d y}{d x}\right|_{P}\right)}$
Length of the Sub - Tangent $=\frac{y}{\left(\left.\frac{d y}{d x}\right|_{P}\right)}$
From right - angled triangle $\triangle P M T$

$$
\begin{aligned}
P T^{2} & =P M^{2}+T M^{2} \\
& =y^{2}+\frac{y^{2}}{\left(\left.\frac{d y}{d x}\right|_{P}\right)^{2}} \\
P T & =y \times \sqrt{1+\frac{1}{\left(\left.\frac{d y}{d x}\right|_{P}\right)^{2}}}
\end{aligned}
$$

Length of the Tangent $=y \times \sqrt{1+\frac{1}{\left(\left.\frac{d y}{d x}\right|_{P}\right)^{2}}}$
In right - angled triangle $\triangle P M N, \angle M P N=\theta$
$\frac{M N}{P M}=\tan \theta=\left.\frac{d y}{d x}\right|_{P}$
$\Rightarrow \frac{M N}{y}=\left.\frac{d y}{d x}\right|_{P}$
$\Rightarrow M N=y \times\left(\left.\frac{d y}{d x}\right|_{P}\right)$
Length of the Sub - Normal $=y \times\left(\left.\frac{d y}{d x}\right|_{P}\right)$
Also,

$$
\begin{aligned}
P N^{2} & =P M^{2}+M N^{2} \\
& =y^{2}+y^{2}\left(\left.\frac{d y}{d x}\right|_{P}\right)^{2} \\
P N & =y \times \sqrt{1+\left(\left.\frac{d y}{d x}\right|_{P}\right)^{2}}
\end{aligned}
$$

Length of the Normal $=y \times \sqrt{1+\left(\left.\frac{d y}{d x}\right|_{P}\right)^{2}}$

(3) Angle of Intersection of the curves:

Angle of intersection of two curves, represented by functions $y=f(x)$ and $y=g(x)$ is defined as the angle between the tangents drawn to tow curves at the point of intersection.

If the tangent line drawn to the curve $y=f(x)$ at point $P(x, y)$ makes an angle θ_{1} with the positive direction of x - axis, then slope m_{1} of the tangent line is given by

$$
m_{1}=\tan \theta_{1}=\left.\frac{d f}{d x}\right|_{P}
$$

Similarly, If the tangent line drawn to the curve $y=g(x)$ at point $P(x, y)$ makes an angle θ_{2} with the positive direction of x - axis, then slope m_{2} of the tangent line is given by

$$
m_{2}=\tan \theta_{2}=\left.\frac{d g}{d x}\right|_{P}
$$

If α is the angle between the two tangents drawn at point of intersection $P(x, y)$, then

$$
\begin{aligned}
\tan \alpha & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \left.=\left.\left|\frac{\left.\frac{d f}{d x}\right|_{P}-\left.\frac{d g}{d x}\right|_{P}}{1+\frac{d f}{d x}}\right|_{P} \frac{d g}{d x}\right|_{P} \right\rvert\,
\end{aligned}
$$

Orthogonal Intersection:

Curves are said to intersect orthogonality or intersection is said to be orthogonal, if the angle of intersection is 90° or $\frac{\pi}{2}$.

That is

$$
\alpha=\frac{\pi}{2}
$$

That is

$$
\begin{aligned}
& 1+\left.\left.\frac{d f}{d x}\right|_{P} \frac{d g}{d x}\right|_{P}=0 \\
& \left.\left.\Rightarrow \frac{d f}{d x}\right|_{P} \frac{d g}{d x}\right|_{P}=-1
\end{aligned}
$$

Important Result:

If $\quad S_{1}: x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0$
And $\quad S_{2}: x^{2}+y^{2}+2 g_{2} x+2 f_{2} y+c_{2}=0$
Represent equations of two circles which intersect orthogonally, then

$$
2 g_{1} g_{2}+2 f_{1} f_{2}=c_{1}+c_{2}
$$

(4) Increasing Decreasing Functions:

Increasing Function

Given function $y=f(x)$
If $\quad x_{2}>x_{1} \Rightarrow f\left(x_{2}\right) \geq f\left(x_{1}\right)$ then $f(x)$ is a non-decrea $\sin g$ function.
If $x_{2}>x_{1} \Rightarrow f\left(x_{2}\right)>f\left(x_{1}\right)$ then $f(x)$ is an increa $\sin g$ function.

OR
Given function $y=f(x)$
If $\quad x_{2}>x_{1} \Rightarrow f\left(x_{2}\right) \geq f\left(x_{1}\right)$ then $f(x)$ is an increa $\sin g$ function.
If $\quad x_{2}>x_{1} \Rightarrow f\left(x_{2}\right)>f\left(x_{1}\right)$ then $f(x)$ is strictly (monotonically) increa $\sin g$ function.

Graph of an increasing function:

Decreasing Function

Given function $y=f(x)$
If $\quad x_{2}>x_{1} \Rightarrow f\left(x_{2}\right) \leq f\left(x_{1}\right)$ then $f(x)$ is a non-increa $\sin g$ function.
If $\quad x_{2}>x_{1} \Rightarrow f\left(x_{2}\right)<f\left(x_{1}\right)$ then $f(x)$ is a decrea $\sin g$ function.

OR
Given function $y=f(x)$
If $x_{2}>x_{1} \Rightarrow f\left(x_{2}\right) \leq f\left(x_{1}\right)$ then $f(x)$ is a decrea $\sin g$ function.
If $\quad x_{2}>x_{1} \Rightarrow f\left(x_{2}\right)>f\left(x_{1}\right)$ then $f(x)$ is strictly (monotonically) decrea $\sin g$ function.

Graph of an decreasing function:

Relation between $\tan \theta$ and $\frac{d y}{d x} / f^{\prime}(x)$
$>$ Angle of inclination θ of tangent line drawn to graph of the function $y=f(x)$ at point $P(x, y)$.
$>$ Correlation of $\tan \theta$ to $\frac{d y}{d x} / f^{\prime}(x)$

Increasing function
θ is acute

$$
\tan \theta=\left.\frac{d y}{d x}\right|_{P(x, y)}>0
$$

(Slope of the tangent line is positive)

Decreasing function
θ is obtuse $\tan \theta=\left.\frac{d y}{d x}\right|_{P(x, y)}<0$
(Slope of the tangent line is negative)
(5) Stationery Points:
(i) Maxima - Minima (Global Maxima / Global Minima and Local Maxima / Local Minima or Absolute Maxima / Absolute Minima and Relative Maxima / Relative Minima)
(ii) Point of Inflexion, Concavity / Convexity of the Curves
1.) Point of Maxima $\rightarrow \frac{d y}{d x}=0, \frac{d^{2} y}{d x^{2}}<0$

$$
\frac{d y}{d x}=0 \Rightarrow \text { Tangent parallel to } x \text { - axis }
$$

Maxima on the Number Line:

2.) Point of Minima $\rightarrow \frac{d y}{d x}=0, \frac{d^{2} y}{d x^{2}}>0$

$$
\frac{d y}{d x}=0 \Rightarrow \text { Tangent parallel to } \mathrm{x}-\text { axis }
$$

Minima on the Number Line:

3.) Point of Inflexion $\rightarrow \frac{d y}{d x}=0, \frac{d^{2} y}{d x^{2}}=0$

Point of Inflexion on Number Line:
(For the diagram as shown above

$$
\begin{gathered}
\stackrel{\frac{d y}{d x} \rightarrow \longrightarrow}{\text { Direction of Motion } \rightarrow} \\
\frac{0}{\frac{d y}{d x}=0} \\
\frac{d^{2} y}{d x^{2}}=0
\end{gathered}
$$

Point of Inflexion $\rightarrow \frac{d y}{d x}=0, \frac{d^{2} y}{d x^{2}}=0$

Point of Inflexion on Number Line:
(For the diagram as shown above

(6)

Shortest distance

(a) Between a curve and a point
(b) Between two curves (Non intersecting)

Important: Shortest distance is the normal distance from the given point to the curve or between the two curves.

(a) Shortest distance between a curve and a point:

Example (): The shortest distance between the curve $y=x^{2}$ and $P\left(0, \frac{5}{2}\right)$ is \qquad
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\sqrt{2}$
(d) $\frac{3}{2}$

Solution: option (d)
Curve $y=x^{2}$ and $P\left(0, \frac{5}{2}\right)$

Let $Q(p, q)$ be a point on the curve $y=x^{2}$, such that $P Q$ is the shortest distance.
$P Q$ is the shortest distance $\Rightarrow P Q$ is normal to parabola $y=x^{2}$.
$y=x^{2} \Rightarrow \frac{d y}{d x}=2 x$
Also $Q(p, q)$ lies on $y=x^{2} \Rightarrow q=p^{2}$
\Rightarrow Slope of tangent at $Q(p, q)$ is $m_{1}=2 p$
\Rightarrow Slope of normal at $Q(p, q)$ is $m_{2}=-\frac{1}{2 p}$
Equation of normal at $Q(p, q)$ is $\quad y-p^{2}=-\frac{1}{2 p}(x-p)$
This passes through $P\left(0, \frac{5}{2}\right) \Rightarrow \frac{5}{2}-p^{2}=-\frac{1}{2 p}(0-p)$
$\Rightarrow 5-2 p^{2}=1$
$\Rightarrow 2 p^{2}=4$
$\Rightarrow p= \pm \sqrt{2}$
$p= \pm \sqrt{2} \Rightarrow q=p^{2}=2$
$\Rightarrow \quad$ There are two points $Q(\sqrt{2}, 2)$ in first quadrant and $Q^{\prime}(-\sqrt{2}, 2)$ in the second quadrant.
Distance $P Q=\sqrt{(\sqrt{2}-0)^{2}+\left(2-\frac{5}{2}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{2+\frac{1}{4}} \\
& =\sqrt{\frac{9}{4}} \\
& =\frac{3}{2} \text { units }
\end{aligned}
$$

Example (): The shortest distance between the curve $y^{2}=4 x$ and $x^{2}+(y-3)^{2}=4$ is
(a) $2-\sqrt{2}$
(b) $\sqrt{2}$
(c) 2
(d) $2 \sqrt{2}$

Solution: option (a)

$$
y^{2}=4 x \Rightarrow \text { Parabola with vertex } O(0,0)
$$

$x^{2}+(y-3)^{2}=4 \Rightarrow$ Circle with Centre $C(0,3)$ and radius $r=2$
Shortest distance is along the line which is normal to both the curves.

From the diagram, CPQ is the normal to both the curves. Also, normal passes through the centre of the circle. $P Q$ is the shortest distance.
Let $Q(p, 2 p)$ on the parabola.
$y^{2}=4 x \Rightarrow 2 y \frac{d y}{d x}=4$
$Q(2,2 p) \Rightarrow \frac{d y}{d x}=\frac{2}{2 p}=\frac{1}{p}$
Slope of tangent at Q is $m=\frac{1}{p}$
Therefore, slope of normal at Q is $m^{\prime}=-p$
Equation of normal at Q is

$$
y-2 p=-p(x-p)
$$

This passes through $C(0,3)$
$\Rightarrow 3-2 p=-p(0-p)$
$\Rightarrow p^{2}+2 p-3=0$
$\Rightarrow(p+3)(p-1)=0$
$\Rightarrow p=-3,1$
$p=-3$ is rejected (p cannot be negative)
$\Rightarrow p=1$
$\Rightarrow Q(1,2)$
$C Q=\sqrt{(1-0)^{2}+(3-2)^{2}}=\sqrt{2}$
$P Q=|C Q-C P|$
$=|\sqrt{2}-2|$
$=2-\sqrt{2}$
(7) Mean Value Theorems:
(a) Lagrange's Mean Value Theorem (LMVT):

Statement: Let function $f(x)$ be
(i) Continuous in $[a, b]$
(ii) Differentiable in (a, b)

Then, \exists atleast one point $x=c, c \in(a, b)$
Such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Geometrical Meaning of LMVT:

According to Lagrange's Mean Theorem,
Slope of the tangent line (at $x=c$) = slope of the chord AB

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

That is, there exists a point $x=c, c \in(a, b)$, such that tangent drawn at $x=c$ is parallel to the chord AB .

Very Important:
There can be more than one point where tangents drawn will be parallel to chord $A B$

From the diagram,

$$
f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)=f^{\prime}\left(c_{3}\right)=f^{\prime}\left(c_{4}\right)=\frac{f(b)-f(a)}{b-a}
$$

(b) Rolle's Theorem:

Statement: Let function $f(x)$ be
(i) Continuous in $[a, b]$
(ii) Differentiable in (a, b)
(iii) $\quad f(b)=f(a)$

Then, \exists atleast one point $x=c, c \in(a, b)$
Such that $f^{\prime}(c)=0$

Important:

- Geometrical Meaning of Rolle's Theorem:

There exists a point $x=c, c \in(a, b)$, such that tangent drawn at $x=c$ is parallel to x axis.

- Rolle's Theorem can be derived from Lagrange's Mean Value Theorem.

According to Lagrange's Mean Theorem,
Slope of the tangent line (at $x=c$) = slope of the chord AB

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\
& f(b)=f(a) \Rightarrow f^{\prime}(c)=0
\end{aligned}
$$

That is tangent at $x=c$ is parallel to x - axis.

- There may exist more than one point, where $f^{\prime}(c)=0$

From the diagram,

$$
f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)=f^{\prime}\left(c_{3}\right)=f^{\prime}\left(c_{4}\right)==f^{\prime}\left(c_{5}\right)=0
$$

Relation between the Roots of an equation and Rolle's Theorem:

Let $f(x)=a x^{2}+b x+c$ be a quadratic function with $a \neq 0$
Let $f(x)=0$ has two real roots α and β.
Then from Rolle's Theorem,
$f^{\prime}(x)=0$ will have a root between α and β
$f^{\prime}(x)=0$
$\Rightarrow 2 a x+b=0$
$\Rightarrow c=-\frac{b}{2 a}, \quad c \in(a, b)$
Where, $x=c$ is root of the equation $2 a x+b=0$

$x=c=-\frac{b}{2 a}$ is the root of $g(x)=0$
Where, $g(x)=f^{\prime}(x)=2 a x+b$

This conjecture holds true for a polynomial function of degree " n "

$$
f(x)=p(x)
$$

having " n " real roots.
(c) Cauchy's Mean Value Theorem:

Statement: Let functions $f(x)$ and $g(x)$ be
(i) Continuous in [a,b]
(ii) Differentiable in (a, b)
(iii) $g^{\prime}(x) \neq 0 \quad \forall x \in R$

And (iv) $\quad g(b) \neq g(a)$
Then, \exists atleast one point $x=c, c \in(a, b)$
Such that, $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$
(8) Derivatives and the roots of a polynomial equation

Application of derivatives helps in:

- Evaluation of roots
- Location of roots

Evaluation of Roots:

Example (): Two roots of the cubic equation $a x^{3}+3 b x^{2}+3 c x+d=0$ are equal. Then each of the equal roots is \qquad
(a) $\frac{a c-b d}{2\left(a c-b^{2}\right)}$
(b) $\frac{b c-a d}{2\left(b c-d^{2}\right)}$
(c) $\frac{b c-a d}{2\left(a c-b^{2}\right)}$
(d) $\frac{a c-b d}{2\left(b^{2}-a c\right)}$

Solution: option (c)

$$
a x^{3}+3 b x^{2}+3 c x+d=0
$$

Let the roots of the equation be α, α and β.

$$
\begin{equation*}
a \alpha^{3}+3 b \alpha^{2}+3 c \alpha+d=0 \tag{i}
\end{equation*}
$$

α is a repeated root
$\Rightarrow f^{\prime}(\alpha)=0$
$\Rightarrow 3 a x^{2}+6 b x+3 c=0 \quad$ at $x=\alpha$
$\Rightarrow 3 a \alpha^{2}+6 b \alpha+3 c=0$
$\Rightarrow a \alpha^{2}+2 b \alpha+c=0$
$a \alpha^{3}+3 b \alpha^{2}+3 c \alpha+d=0$
Multiplying (ii) by α
$\Rightarrow a \alpha^{3}+2 b \alpha^{2}+c \alpha=0$
Subtracting, we get

$$
\begin{equation*}
b \alpha^{2}+2 c \alpha+d=0 \tag{iv}
\end{equation*}
$$

$a \alpha^{2}+2 b \alpha+c=0$
$\cdots(i i) \times b$
$b \alpha^{2}+2 c \alpha+d=0$
\ldots (iv) $\times a$
Subtracting
$2\left(b^{2}-a c\right) \alpha+b c-a d=0$
$\Rightarrow \alpha=\frac{b c-a d}{2\left(a c-b^{2}\right)}$

Location of Roots:

Example (): The values of k for which the equation $x^{3}-3 x-k=0$ has only one real root
(a) $k= \pm 2$
(b) $-2<k<2$
(c) $k \in(-\infty,-2)$
(d) $k \in(2, \infty)$

Solution: options (c) \& (d)
$x^{3}-3 x-k=0$
\Rightarrow corresponding function is
$f(x)=x^{3}-3 x-k$.
$f^{\prime}(x)=3 x^{2}-3$
$f^{\prime}(x)=0 \Rightarrow x= \pm 1$.
$f^{\prime \prime}(x)=6 x$
$f^{\prime \prime}(1)=6$ (minima)
$f^{\prime \prime}(-1)=-6$ (maxima)
$f(1)=-2-k$ and $f(-1)=2-k$

For one real root
either $f(-1)<0$

$$
\begin{aligned}
& \Rightarrow 2-k<0 \\
& \Rightarrow k>2
\end{aligned}
$$

or, $\quad f(1)>0$.

$$
\Rightarrow-2 k>0 .
$$

$$
k<-2
$$

(9) Approximations and Errors:

Approximations:

Let $y=f(x)$ be the given function
Then from the definition of the derivatives,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}+\Delta$
where $\Delta \lll \ll$
$\Rightarrow h f^{\prime}(x) \approx f(x+h)-f(x)+h \Delta$
$h \rightarrow 0$ and $\Delta \lll \quad \Rightarrow h \Delta \lll \lll$ and is a very small quantity and can be neglected.
$\Rightarrow h f^{\prime}(x) \approx f(x+h)-f(x)$
$\Rightarrow f(x+h) \approx f(x)+h f^{\prime}(x)$
Approximation formula:

$$
f(x+h) \approx f(x)+h f^{\prime}(x)
$$

Errors:

We have, $\quad \frac{d y}{d x}=\lim _{\partial x \rightarrow 0} \frac{\partial y}{\partial x}$
Where ∂y is change in ' y ' for corresponding change ∂x in ' x '
This is approximated as

$$
\frac{d y}{d x} \approx \frac{\partial y}{\partial x}+\epsilon \quad \in \lll \ll
$$

$\epsilon \lll \ll$ can be neglected in comparison
Hence, $\quad \frac{d y}{d x} \approx \frac{\partial y}{\partial x}$
$\Rightarrow \quad \partial y \approx\left(\frac{d y}{d x}\right) \partial x$
$\partial y, \partial x$ are defined as absolute errors in ' y ' and ' x '.
$\frac{\partial y}{y}, \frac{\partial x}{x}$ are defined as relative errors
And $\left(\frac{\partial y}{y}\right) \times 100,\left(\frac{\partial x}{x}\right) \times 100$ are defined as percentage errors

Application to Geometry

In this sub - concept, derivative is used

- As Rate Measurer
- For the determination of maximum and minimum values

Application to Phusics

In this sub - concept, derivative is used

- As Rate Measurer

Examples: $\quad \frac{d x}{d t}=$ Velocity (Rate of change of displacement

$$
\frac{d v}{d t}=\text { acceleration (Rate of change of velocity }
$$

